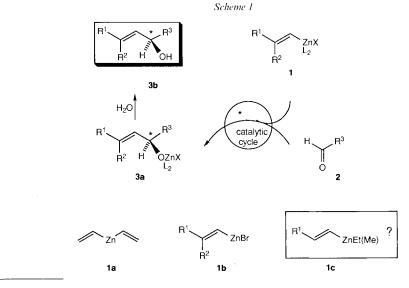
13. Catalytic Asymmetric Synthesis of *Secondary* (E)-Allyl Alcohols from Acetylenes and Aldehydes *via* (1-Alkenyl)zinc Intermediates

Preliminary Communication

by Wolfgang Oppolzer* and Rumen N. Radinov


Département de Chimie Organique, Université de Genève, CH-1211 Genève 4

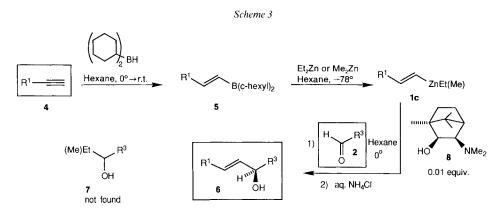
(10.XII.91)

Hydroboration of aliphatic 1-alkynes with freshly prepared dicyclohexylborane (1 mol-equiv., hexane), treatment of the resulting [(E)-1-alkenyl]boranes **5** with Et₂Zn or Me₂Zn (1.05 mol-equiv.) followed by addition of (-)-3-*exo*-(dimethylamino)isoborneol (DAIB, **8**; 0.01 mol-equiv.), subsequent addition of a solution of an aromatic or aliphatic aldehyde (1 mol-equiv., hexane), and quenching with aq. NH₄Cl provided (*E*)-allyl alcohols **6** usually in 70–95% yield with 79–98% enantiomeric excess (*Scheme 3* and *Table*).

Optically pure *secondary* allyl alcohols **3b** (as well as their antipodes) are key intermediates in organic synthesis. Recently, we have presented a new enantioselective approach to compounds of the type **3b** based on 'asymmetrically catalyzed' additions of (1-alkenyl)zinc reagents **1a** [1] and **1b** [2] to aromatic and aliphatic aldehydes (*Scheme 1*)¹).

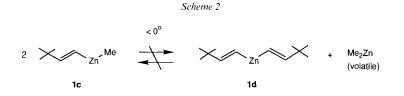
We now envisaged an analogous ligand-controlled 1-alkenyl transfer from mixed (1-alkenyl)(alkyl)zinc reagents such as **1c** focussing our attention on the following points: 1) good accessibility, 2) chemical and stereochemical stability²), 3) exclusive transfer of

¹) Review on asymmetric additions of organozinc reagents to aldehydes: [3].


²) For the equilibrium between 'symmetrical' and mixed dialkylzinc species, see [4].

the 1-alkenyl ligand to aldehydes, and 4) enantioselective catalysis of this addition reaction.

Transmetalation of readily available (1-alkenyl)boranes with Et_2Zn or Me_2Zn seemed a viable approach to Zn reagents **1c**, particularly in view of the recently reported metal exchange reaction of tris[(Z)-1,2-dialkyl-1-alkenyl]boranes with Et_2Zn [5]³).


Hydroboration of 1-alkynes 4 with freshly prepared dicyclohexylborane gave [(*E*)-1- alkenyl]boranes 5 [7] which were directly treated with 1 mol-equiv. of Et_2Zn or Me_2Zn^4).

Various aldehydes 2 were then added to the thus prepared Zn reagents 1c at 0° in the presence of a catalytic amount of a chiral amino-alcohol. Good results, summarized in *Scheme 3* and in the *Table*, were achieved with (–)-3-*exo*-(dimethylamino)isoborneol (DAIB) [3] [8].

Thus, DAIB (8; 0.01 mol-equiv.) was added to a mixture $5/Et_2Zn$ or $5/Me_2Zn$ (1:1.05) in hexane at -78° . Subsequent slow addition of an aldehyde in hexane at 0° ,

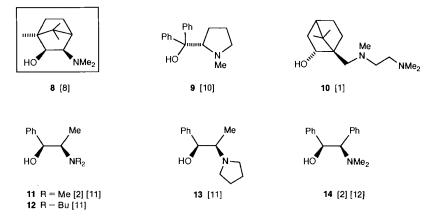
⁴) The transmetalation reaction of [(E)-3,3-dimethylbut-1-enyl]dicyclohexylborane (5; R¹ = t-Bu) with Me₂Zn was monitored by ¹H-NMR measurements (in (D₈)toluene) and, thus, found to be complete at -65° within a few min to give two equilibrating alkenylzinc species (monomer/dimer?, ratio 2:1 at -40°). This temperature-dcpendent equilibrium is completely shifted towards the major species after warming to 0° (within 10 min). At 0°, slow decomposition became visible. Three-fold co-evaporation of the solution with (D₈)toluene at 0° produced no major changes in the spectrum (-40°) excluding an equilibrium between mixed and 'symmetrical' zinc species 1c/1d (*Scheme* 2)²).

³) N-Methylpiperidine-catalyzed additions of the *in situ* obtained bis(1,2-dialkyl-1-alkenyl)zinc reagents to aldehydes (hexane, 0°, 12 h) afforded racemic allyl alcohols [5]. For the preparation of diallylzinc by transmetalation of triallylboranes with Me₂Zn, see [6].

Entry	Series	Alkyne R ¹	Dialkyl- zinc	8 mol-equiv.	Aldehyde R ³	Allyl-Alcohol Product		
						Yield [%]	e.e. ^b) [%]	$[\alpha]_{D}^{c}(c)$
1	a	Bu	Me ₂ Zn	0.01	Ph	87	96	+ 38.0 (2.0)
2	b	$C_{6}H_{13}$	Et_2Zn	0.01	Ph	77	92	+33.1(2.0)
3	b	C_6H_{13}	Me ₂ Zn	0.01	Ph	85	94	+34.4(2.0)
4	c	C_6H_{13}	Et_2Zn	0.01	Et	91	84	+ 2.0(1.7)
5	с	C_6H_{13}	Et_2Zn	0.05	Et	86	86	+ 2.0(1.2)
6	d	C_6H_{13}	Et_2Zn	0.01	Bu	86	85	+ 5.0(3.8)
7	d	$C_{6}H_{13}$	Me_2Zn	0.01	Bu	85	80	+ 4.7(1.1)
8	e	C_6H_{13}	Et_2Zn	0.01	i-Bu	78	85	+ 6.4(1.3)
9	f	C_6H_{13}	Et_2Zn	0.01	cyclohexyl	70	91	-11.2(1.6)
10	g	C_6H_{13}	Et_2Zn	0.01	t-Bu	28	73	-10.0(1.1)
11	h	cyclohexyl	Me ₂ Zn	0.01	Ph	83	95	+36.7(1.6)
12	i	cyclohexyl	Et_2Zn	0.01	cyclohexyl	67	80	-15.9(1.5)
13	i	t-Bu	Me ₂ Zn	0.01	Ph	90	98	+49.3(1.7)
14	k	t-Bu	Et_2Zn	0.01	Bu	94	79	+ 3.6(1.7)
15	k	t-Bu	Me ₂ Zn	0.01	Bu	95	74	+ 3.0(1.8)

 Table. Asymmetric Synthesis of (E)-Allyl Alcohols from 1-Alkynes by Successive Addition of Dicyclohexylborane, Dialkylzinc, DAIB (8), and an Aldehyde at 0°a)

^a) All reactions were carried out in hexane, but Me_2Zn was added as a 2M solution in toluene (*Aldrich*). All isolated new compounds were characterized by IR, ¹H- and ¹³C-NMR, and MS.


^b) Enantiomeric excess (e.e.) determined by HPLC (*Chiracel OB: Entries 1, 2, and 3; Chiracel OD, Entries 11* and 13), or by ¹H-NMR (*Entries 8, 9, and 12*) and GC analyses (*Entries 4, 5, 6, 7, 10, 14, and 15*) of (1S)-camphanic-acid esters.

^c) $[\alpha]_D$ measurements: Entry 12 in EtOH at 23°; Entry 9 in MeCN at 20°; other entries in CHCl₃ at 20°.

stirring at 0° for 1 h, and quenching of the mixture with aq. NH_4Cl afforded allyl alcohols 6 in good yields (except *Entry* 10)⁵).

Examination of the *Table* reveals the following trends. The use of either, Et₂Zn or Me₂Zn as the transmetalating agent is similarly effective (*cf. Entries 2/3, 6/7,* and 14/15). No saturated products 7 could be found, consistent with an exclusive 1-alkenyl transfer from 1c to the aldehydes. No (Z)-allyl alcohols were formed which reveals stereochemical retention in the transmetalation and addition steps $5 \rightarrow 1c \rightarrow 6$. Increasing the amount of DAIB (8) did not change the extent of asymmetric induction (*Entries 4/5*). With benzal-dehyde, very high enantioselectivities (92–98%, *Entries 1, 2, 3, 11,* and 13) were achieved. Aliphatic straight-chain, β - and α -branched aldehydes furnished allyl alcohols **6** with up to 91% enantiomeric excess (e.e.). However, pivaldehyde gave alcohol **6c** in low yield and modest optical purity (73% e.e.; *Entry 10*). The (*R*)-configuration of major product **6i** (*Entry 12*) was determined *via* comparison of its optical rotation with the published value $[\alpha]_D = -19.8$ (c = 1.46, EtOH, $T = 23^{\circ}$) [9]. It seems reasonable to assume an analogous

⁵) The following procedure is representative: cyclohexene (205 μl, 2 mmol) was added under Ar at 0° to a stirred 1M soln. of borane–(methyl sulfide) complex (100 μl, 1 mmol) in hexane (1 ml). After 3 h at 0°, oct-1-yne (150 μl, 1 mmol) was added, and the mixture was stirred at r.t. for 1 h. Then, the soln. was cooled to -78°. Addition (over 10 min) of a 1M soln. of Et₂Zn in hexane (1.05 ml, 1.05 mmol) followed by addition of DAIB (8; 2 mg, 0.01 mmol), immersion of the mixture into an ice-bath (0°), addition (over 20 min) of propionaldehyde (72 μl, 1 mmol) in hexane (4 ml), stirring the mixture at 0° for 1 h, addition of sat. aq. NH₄Cl soln., extraction (Et₂O), washing, drying, and evaporation of the extracts, and chromatography of the residue (SiO₂; hexane/Et₂O) yielded allyl alcohol **6c** (155 mg, 91 %; c.e. 84%).

sense of π -face discrimination for the other examples (*Table*) which also parallels the bias of DAIB (8) on the addition of Et₂Zn to aldehydes [3] [8].

Using the transformation $\mathbf{1c} (\mathbf{R}^{\dagger} = C_6 H_{13}) \rightarrow \mathbf{6c}$ (*Entries 4* and 5) as a reference reaction, the inductive influence of further chiral amino-alcohols **9–14** (0.05 mol-equiv.) was tested.

Proline-derived ligand 9 scored at a level (80% e.e.) comparable to that of DAIB (8) but 10 to 14 performed less effectively (63–75% e.e.).

The nature of the reactive (1-alkenyl)zinc species as well as extensions and applications of this convenient approach to chiral allyl alcohols are subject of further studies in our laboratories.

REFERENCES

- [1] W. Oppolzer, R. N. Radinov, Tetrahedron Lett. 1988, 29, 5645.
- [2] W. Oppolzer, R. N. Radinov, Tetrahedron Lett. 1991, 32, 5777.
- [3] R. Noyori, M. Kitamura, Angew. Chem. 1991, 103, 34; ibid. Int. Ed. 1991, 30, 49.
- [4] K. Nützel, in 'Houben-Weyl, Methoden der Organischen Chemie', Ed. E. Müller, Georg-Thieme, Stuttgart, 1973, Vol. 13/2a, p. 655.
- [5] M. Srebnik, Tetrahedron Lett. 1991, 32, 2449.
- [6] K.H. Thiele, P. Zdunneck, J. Organomet. Chem. 1965, 4, 10.
- [7] H. C. Brown, A. K. Mandal, S. U. Kulkarni, J. Org. Chem. 1977, 42, 1392.
- [8] M. Kitamura, S. Suga, K. Kawai, R. Noyori, J. Am. Chem. Soc. 1986, 108, 6071.
- [9] V. S. Martin, S. S. Woodard, T. Katsuki, Y. Yamada, M. Ikeda, K. B. Sharpless, J. Am. Chem Soc. 1981, 103, 6237 (Supplementary Material).
- [10] K. Soai, A. Ookawa, T. Kaba, K. Ogawa, J. Am. Chem. Soc. 1987, 109, 7111.
- [11] K. Soai, S. Yokoyama, T. Hayasaka, J. Org. Chem. 1991, 56, 4264.
- [12] K. Saigo, S. Ogawa, S. Kikuchi, A. Kasahara, H. Nohira, Bull. Chem. Soc. Jpn. 1982, 55, 1568.